
! HCIN720 
Prototyping Wearable and
Internet of Things Devices

Dr. Daniel Ashbrook

Today

• Who are you?

• Overview of the course (what are we going to learn?)

• Course logistics

• Why are we going to learn these things?

About me

who I am

PhD Computer Science 2009
MS Computer Science 2005
BS Computer Science 2001

who I am

2009–2013 2013–2014

2014–

Course overview

About this course
We can't any longer think only
about designing for screen-
based devices. There is a
whole new world of linked
hardware/software/data out
there.

These are physical objects
that also have digital
representations or linkages;
alternately, it’s digital
information that has a
physical instantiation.

hardware

software data

About this course

The focus of this class is on prototyping user
experiences for physical artifacts that are
connected to the Internet:

devices that allow things sensed about the physical
world to be acted on in the cloud,

devices that allow things happening on the Internet  
to be reflected in the physical world, 
devices that we carry on our bodies every day.

Questions for the course

• What's out there?

• Where did it come from?

• How does information flow amongst the Internet and
these devices?

• What are the different kinds of user experiences possible
with these devices?

• How do we design these experiences?

Logistics

Communication

• I will not use MyCourses in this class

• Because it is horrible

• Assignments and everything else will be on the course
website: http://fetlab.rit.edu/720

• (this link is on MyCourses)

• We will use Slack for communication, discussions, help,
etc; you will sign up via instructions on the course web
site.

Skills
• 3D printing

• Laser cutting

• Sewing

• 2D modeling for
laser cutting

• 3D modeling for
3D printing

• Generative design

• Soft circuits

• Foam core

• Arduino

• Arduinos and
interaction

• Bluetooth/BLE

• Wifi

• Processing

• Machine learning

• Signal processing

• Audio generation

• node.js

• Event-driven
programming

• Basic electronics
theory

• Motors, servos

• Connecting
sensors and
actuators via IO
pins, I2C, SPI

• Capacitive sensing

• Sketching

• Data visualization

• Web APIs (REST)

Examples

Demo

Hardware

Particle.io Photon

• Arduino-like WiFi-based
cloud-magic microcontroller

• $19

• Supported path from

prototype → product

Hardware

• $89 (+tax) fee for materials

• You get to keep them!

• Includes Photon and a bunch of stuff

Example: control an LED over the Internet
int	led1	=	D0;	
int	led2	=	D7;	

void	setup()	{	
	 pinMode(led1,	OUTPUT);	
	 Spark.function("led",	ledToggle);	
}	

void	loop()	{}	

int	ledToggle(String	command)	{	
	 if(command	==	“on”)	{	
	 	 digitalWrite(led1,	HIGH);	
	 	 return	1;	
	 }	
	 else	if(command	==	“off”)	{	
	 	 digitalWrite(led1,	LOW);	
	 	 return	0;	
	 }	
	 else	
	 	 return	-1;	
}

https://api.particle.io/v1/devices/
0123456789abcdef/led?
access_token=123412341234& 
args=on

https://api.particle.io/v1/devices/
0123456789abcdef/led?
access_token=123412341234& 
args=off

https://api.particle.io/v1/devices/
0123456789abcdef/led?
access_token=123412341234& 
args=on

Grading

Individual assignments (3) 30%

Group assignment 30%

Final project 30%

Class participation 10%

Extra credit (maybe) 5%

Total 105%

Individual assignments

• Relatively straightforward—reflect the skills you’ve
learned in class

• Each worth 10% of final grade (30% total)

Group assigment

• Teams of 2 students

• More complex: requires independent learning and
research

• 30% of the final grade

Final project

• Teams of 2 students (could be the same or different)

• Integrate everything you’ve learned

• 30% of final grade

Class participation
• Show up to every class

• Be prepared for class

• Be on time

• Help your classmates

• Participate in your team

• Engage in class discussion

• Various smaller tasks (e.g. fill out survey)

• Worth 10% of final grade!

Policies

Late assignment policy

• Late assignments are not accepted

• Unless you get my prior permission; then 50% penalty

Attribution

• Lots of coding and making in this course

• You will find help on the Internet. This is ok!

• Give proper credit for what helped you

• Comments in code

• Mentions in documentation or on slides

• See syllabus

• Don’t plagiarize!

Plagiarism

Plagiarism is the representation of others’ ideas as one’s own
without giving proper attribution to the original author or authors.
Plagiarism occurs when a student copies direct phrases or code
from a source (e.g. books, journals, and internet) and does not
provide quotation marks, paraphrases, or attribution; or summarizes
those ideas without giving credit to the author or authors.

Plagiarism

In other words: 
if you use something

someone else did, 
you must acknowledge 

that other person’s work.

Attribution

• Lots of coding and making in this course

• You will find help on the Internet. This is ok!

• Give proper credit for what helped you

• Comments in code

• Mentions in documentation or on slides

• See syllabus

• Don’t plagiarize!

RIT gender-based discrimination
policy

RIT is committed to providing a safe learning environment,
free of harassment and discrimination as articulated in our
university policies located on our governance website.
 RIT’s policies require faculty to share information about
incidents of gender based discrimination and harassment
with RIT’s Title IX coordinator or deputy coordinators,
regardless whether the incidents are stated to them in
person or shared by students as part of their coursework.

If you have a concern related to gender-based
discrimination and/or harassment and prefer to have a
confidential discussion, assistance is available from one of
RIT’s confidential resources on campus (listed in syllabus).

RIT gender-based discrimination
policy

In other words: 
be kind.

Failure

• Failure is how we learn!

• This is my second time teaching this course. My lectures,
projects, etc might probably will fail.

• We’ll all fail & learn collaboratively!

• Key: try!

Questions?

What is the point of this
course?

Why do we care?
• Old paradigms:

• one user per computer

• several users per computer

• software ↔ software

• New paradigms:

• many computers per user

• many computer for many users

• hardware ↔ software ↔ cloud

The Parts

• User experience

• input (e.g. sensors)

• actuators (e.g. displays)

• microcontrollers (abbrev: µC)

• Internet (you know what this is)

Skill #1: git

What’s git?

• A Version Control System (VCS)—a way to manage
changes in files

• Keeps track of changes

• Go back to a previous change

• Work on code in teams

Why do you care?

• With github, a great way to share and back up code

• Experimenting is easy without losing changes

• Current industry standard: employers will like that you
know it

What’s github?

• Social coding website

• It uses git, but it git is separate from github

• Supports documentation, wikis, websites too

git walkthrough

some
code

“commit”

commit commit

commit

commit

Branch

Branch

Branch

Branch

Merge

Branch

Merge

Branch

😦

git terminology 1
• Repository: a collection of related code—usually a single

project

• Stage: a temporary list of all of the things that will be put into
a single commit

• Commit: a group of related changes; often entire files, but can
consist of parts of files as well

• Branch: a line of history in a repository

• Merge: an operation to bring all of the historical changes from
one branch into another one

• Conflict: a problem when a merge would result in incompatible
changes

git terminology 2
• Remote: a repository not on your computer; e.g. one on

github

• Clone: to make a copy of a (remote) repository, including all
of its history and branches

• Pull: get all of the new changes from another repository and
put them into your current branch

• Push: send all of your changes to a remote repository

• Fork: on github, make a clone in your account of another
repository so you can make changes

Using git

• git is for managing changes, not making changes

• Create your own directories, use your favorite editors,
just as always; but use git to make sure your work is
backed up and shared

• now: github desktop demo

Questions?

What’s next?

• Due tomorrow: course survey (on web page)

• So I can get an idea of your skills and knowledge

• Due Thursday: class set up (on web page)

• Thursday: hands-on skills—reading public data sources,
visualizing data, jquery, paper.js

• Get set up for class Thursday—see web page!

